Intracellular processing of proteins mediated by biodegradable polyelectrolyte capsules.

نویسندگان

  • Pilar Rivera-Gil
  • Stefaan De Koker
  • Bruno G De Geest
  • Wolfgang J Parak
چکیده

Multilayer polyelectrolyte capsules made by layer-by-layer assembly of oppositely charged biodegradable polyelectrolytes were filled with a model of a nonactive prodrug, a self-quenched fluorescence-labeled protein. After capsule uptake by living cells, the walls of the capsules were actively degraded and digested by intracellular proteases. Upon capsule wall degradation, intracellular proteases could reach the protein cargo in the cavity of the capsules. Enzymatic fragmentation of the self-quenched fluorescence-labeled protein by proteases led to individual fluorescence-labeled peptides and thus revoked self-quenching of the dye. In this way nonactive (nonfluorescent) molecules were converted into active (fluorescent) molecules. The data demonstrates that biodegradable capsules are able to convert nonactive molecules (prodrugs) to active molecules (drugs) specifically only inside cells where appropriate enzymes are at hand. In this way only cargo inside the capsules reaching cells is activated, but not the cargo in capsules which remain extracellular. The peptide fragments undergo further processing inside the cells, leading ultimately to exocytosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From the 2-dimensional unstable polyelectrolyte multilayer to the 3-dimensional stable dry polyelectrolyte capsules.

Polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) polyelectrolyte multilayer was found to be instable and apt to reconstruct in the pure water. By depositing polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) multilayer on the polystyrene-poly(acrylic acid) hybrid CaCO(3) templates, novel polyelectrolyte capsules could be prepared after the removal of the templates. The r...

متن کامل

A novel system for water soluble protein encapsulation with high efficiency: "micelles enhanced" polyelectrolyte capsules.

Novel "micelles enhanced" polyelectrolyte (PE) capsules based on functional templates of hybrid calcium carbonate were fabricated. Evidences suggested that the structure of capsule wall was different from that of conventional PE capsules, and the wall permeability of these PE capsules changed significantly. Lysozyme, a positively charged protein in neutral solution, was studied as a model prote...

متن کامل

Fabrication and Investigation of Polyelectrolyte Capsules with Gold and Silver Nanoparticles in the Shell

Polyelectrolyte capsules with silver and gold nanoparticles in the shell composition have been obtained using calcium carbonate and polystyrene microparticles as cores. Capsules were modified with silver nanoparticles using silver mirror reaction. Gold nanoparticles were embedded in capsule shells via their adsorption from previously obtained sol. A significant difference in the structure of ca...

متن کامل

A study of properties of "micelle-enhanced" polyelectrolyte capsules: Structure, encapsulation and in vitro release.

"Micelle-enhanced" polyelectrolyte capsules were fabricated via a layer-by-layer technique, templated on hybrid calcium carbonate particles with built-in polymeric micelles based on polystyrene-b-poly(acrylic acid). Due to the presence of a large number of negatively charged micelles inside the polyelectrolyte capsule, which were liberated from templates, the capsule wall was reconstructed and ...

متن کامل

Microfluidic System Incorporating Layer-By-Layer Nanofabricated Capsules

A microfluidic system was designed, fabricated and implemented to study the behavior of polyelectrolyte capsules flowing in microscale channels. The silicon component of the system contains microchannels that leads into constrictions, which were fabricated using lithography techniques. Polyelectrolyte microcapsules were also fabricated with well-known layer-by-layer assembly technique, on a sph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2009